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Abstract—Investigation of human brain states through elec-
troencephalograph (EEG) signals is a crucial step in human-
machine communications. However, classifying and analyzing
EEG signals are challenging due to their noisy, nonlinear and
nonstationary nature. Current methodologies for analyzing these
signals often fall short because they have several regularity
assumptions baked in. This work provides an effective, flexible
and noise-resilient scheme to analyze EEG by extracting pertinent
information while abiding by the 3N (noisy, nonlinear and nonsta-
tionary) nature of data. We implement a topological tool, namely
persistent homology, that tracks the evolution of topological
features over time intervals and incorporates individual’s expec-
tations as prior knowledge by means of a Bayesian framework
to compute posterior distributions. Relying on these posterior
distributions, we apply Bayes factor classification to noisy EEG
measurements. The performance of this Bayesian classification
scheme is then compared with other existing methods for EEG
signals.

Index Terms—Bayesian classification, EEG signals, intensity,
marked Poisson point processes, persistent homology, topological
data analysis

I. INTRODUCTION

The emergence of computational intelligence has led us to
an era of excellent communication between users and systems.
These human-computer communications do not require any
external device or muscle intervention and enable computers
to be deliberately controlled via the monitoring of brain
state signals. In order to potentially improve human-machine
interactions, it is crucial to analyze and interpret physiological
measurements effectively to assess individual’s states [1], [2].
Brain signals can encode one’s expectations as a form of
prior beliefs, which have an influence on behavior in times
of uncertainty [3]. A Bayesian approach that integrates prior
knowledge of an individuals innate brain activity with newly
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measured data may improve individual’s state detection, which
can aide to characterize and control ones actions.

EEG signals are 3N–nonstationary, nonlinear and noisy [4].
In particular, they are obscured by various forms of noise, are
nonlinear due to the complexity of underlying interaction in
the nervous system [4]–[6] and are nonstationary due to the
involvement of different time scales in brain activity [7]. The
3N nature of EEG signals requires methods that can encode
individual’s brain history and draw statistical inferences for
these signals.

In this paper, we develop a Bayesian classification scheme
relying on the posterior distributions of persistence diagrams,
which are pertinent topological descriptors. Persistent homol-
ogy is a widely used tool for topological data analysis (TDA)
that captures topological features at multiple scales and pro-
duces summary representations, called persistence diagrams,
that encode the lifespan of the topological features in the
data. Persistent homology has proved to be promising in the
field of data sciences yielding astounding results in a variety
of applications in variety of applications [8]–[23]. Indeed,
physiological signals’ features are defined by the topological
changes of the signals across time. Engaging TDA in the study
of physiological signals is recently emerging. The authors of
[24] measure the topology of EEG data with persistence land-
scapes to detect differences in the EEG signals during epilepsy
attacks versus those produced during healthy brain activity.
However, this method does not investigate the distribution
of the diagrams themselves and suffers from a loss of per-
tinent information. Several other studies implement traditional
machine learning based on feature extractions [25]–[27]. As
selection of an appropriate feature is crucial, these methods
rely on summaries of persistence diagrams, which already
summarize the underlying data themselves. We develop a
Bayesian learning approach that can be applied directly on the
space of persistence diagrams. However, this learning scheme
depends on the estimation of posterior probabilities, which is
not straightforward due to the unusual multiset structure of
persistence diagrams.

To establish a Bayesian framework, we need to define
the prior uncertainty and likelihood through probability dis-
tributions of persistence diagrams. By viewing persistence
diagrams as finite set samples, the authors of [13] propose
a nonparametric estimation of the probability density func-
tion of random persistence diagrams. They also show that
the probability density function can successfully detect the
underlying dynamics of EEG signals and compare it with other
pre-existing TDA methods. A prior distribution of persistence
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diagrams can be obtained through this density function. How-
ever, computing posteriors entirely through the random set
analog of Bayes’ rule may have exponential computational
complexity [28]. To address this, we model random persistence
diagrams as point processes. In particular, we utilize Poisson
point processes which can be entirely characterized by their
intensity.

We commence the Bayesian framework by modeling ran-
dom persistence diagrams generated from a Poisson point
process with a given intensity, which captures the prior uncer-
tainty. In the case of brain state detection, we can incorporate
individual’s expectations about the statistical regularities in
the environment as prior knowledge [3]. Alternatively, we
can choose an uninformative prior intensity when no expert
opinion or information about individual’s expectations is avail-
able. We construct the likelihood component of our framework
by utilizing the theory of marked point processes. Indeed,
we employ the topological summaries of signals in place of
the actual signals. This proves to be useful for a range of
physiological signal analysis [1], [24]–[27], [29], [30]. The
application considered in this paper is the classification of
EEG signals, which allows us to predict individual’s brain
states and advances human-computer communication tech-
niques. Through these topological summaries, we adopt a
substitution likelihood technique [31] rather than considering
the full likelihood of the entire signal data.

Next, we develop a Bayesian learning method by relying
on the posterior obtained from the Bayesian framework. This
method is remarkably flexible as it abides by the 3N nature
of the signals and is extremely powerful as it incorporates
individual’s expectations or domain experts’ knowledge as
prior beliefs. Furthermore, the Bayes factor provides a measure
of confidence that in turn dictates whether further investigation
is feasible. Our model enjoys a closed form of the poste-
rior distribution through a conjugate family of priors, e.g.,
the Gaussian mixtures. Hence the prior-to-posterior updates
yield posterior distributions of the same family. We present a
detailed example of our closed form implementation on sim-
ulated EEG signals to demonstrate computational tractability
and showcase applicability in classification through Bayes fac-
tor estimation. Furthermore, we present a detailed comparison
with other TDA and non-TDA based learning methods.

This paper is organized as follows. Section II provides
a brief overview of persistence diagrams and Poisson point
processes. We establish the Bayesian framework for persis-
tence diagrams in Section III. We then develop our Bayesian
learning method in Section IV, which is used to quantify the
classification outcome. Section V-A introduces a closed form
to the posterior intensity utilizing Gaussian mixture models.
To assess the capability of our algorithm, we investigate its
performance in classifying EEG signals and provide compar-
isons with several other existing methods in Section V. Finally,
we end with the conclusion in Section VI.

II. BACKGROUND

We commence by discussing the background essential for
building our Bayesian model. In Subsection II-A, we start with
the formation of persistence diagrams (PDs) by implementing
sublevel set filtrations. In order to model the uncertainty
present in these persistence diagrams, we consider them as
point processes and pertinent definitions from point processes
(PPs) are given in Subsection II-B .

A. Persistent Homology for Noisy Signals

Persistent homology is a tool from TDA that provides a
robust way to model the topology of real datasets by tracking
the evolution of homological features and summarizing these
in persistence diagrams. Several methods exist to generate
persistence diagrams such as Vietoris Rips or Čech filtrations
[32], but such techniques require the transformation of a signal
to an appropriate point cloud using Takens’s delay embedding
theorem. To circumvent this transformation to point clouds, we
employ the sublevel set filtration method, which summarizes
the shape of signals directly in a PD by employing local critical
points as tersely outlined next.

Consider a signal as a bounded and continuous function
of time f(t) (Fig. 1 (a)). The sublevel set filtration tracks
the evolution of connected components in sets f−1((−∞, r]),
as r increases. The central idea is that as r increases the
connectivity of the set f−1((−∞, r]) remains unchanged
except when it passes through a critical point. For a given
connected component, we record the value of r at which is
born (when r reaches a local minimum), call it b, and the
value at which disappears (when r reaches a local maximum),
call it d, by merging with a pre-existing connected component.
That is to say, whenever two connected components merge, the
one born later disappears while the one born earlier persists
by the elder rule [32]. Once we reach the value max f(t) in
the filtration, all the sublevel sets have merged into a single
connected component, and we terminate the procedure. For
every connected component that arises in the filtration, we
plot the points (b, d) in R2 and call the resulting collection
a persistence diagram (Fig. 1 (b)). To facilitate computation
and preserve the geometric information, we apply the linear
transformation (b, p) = T (b, d) = (b − min(b), d − b) to
each point in our persistence diagrams. We refer to the
resulting coordinates as birth and persistence, respectively, in
W := {(b, p) ∈ R2| b, p ≥ 0} and call this transformed per-
sistence diagram a tilted representation (Fig. 1 (c)). Hereafter
whenever we refer to persistence diagrams, we imply their
tilted representation.

B. Poisson Point Processes

One samples from a finite point process P on a Polish
space X by generating a random number N according to a
cardinality distribution and then for N = n spatially distribute
x = (x1, · · · , xn) ∈ X according to a probability distribution.
In other words, a finite point process is characterized by a
probability mass function (pmf) of the cardinality and a joint
probability density function (pdf) of the elements for a given



cardinality. We model random persistence diagrams as Poisson
point processes (PPPs), hence as points (b,p) = x ∈W. The
defining feature of these point processes is that they are solely
characterized by a single parameter known as the intensity. The
intensity λ(x) of a given x ∈ Rd is the density of the expected
number of points per unit volume at x. Indeed, the intensity
serves as an analog of the first order moment of a random
variable. The intensity in a Poisson point process accounts for
the joint pdf of elements, and the cardinality is Poisson with
mean µ =

∫
λ(x).

Considering persistence diagrams as modeled by such
processes, a link is needed between the prior and the
data/likelihood to conduct Bayesian analysis. The marked
point process provides this connection. Effectively, a marked
point process is a special case of bivariate point process where
one PP ΨM in the Polish space WM (containing the marks) is
determined given knowledge of the PP Ψ in the Polish space
W. A marked Poisson point process ΨM is a finite PP on
W ×WM such that: (i) Ψ = ({pn} , {Pn(•)}) is a PPP on
W, and (ii) for a realization (x,m) ∈ W ×WM , the marks
mi ∈m of each xi ∈ x are drawn independently from a given
stochastic kernel `(•|xi).

III. THE BAYESIAN MODEL

According to Bayes’ theorem, the posterior is proportional
to the product of a likelihood function and a prior. To in-
vestigate Bayesian framework for persistence diagrams, we
need to compute the conditional distribution p(DX |DY ) by
establishing the proposed Bayesian formula for persistence
diagrams, p(DX |DY ) ∝ L(DY |DX)p(DX), where the like-
lihood L(DY |DX) and the prior p(DX) need to be defined
and computed for random persistence diagrams. We employ a
likelihood model for the persistence diagrams generated from
the signals which is analogous to the idea of substitution
likelihood [31]. Next, we develop the prior and likelihood on
the space of persistence diagrams.
Prior: To model prior knowledge for the brain state classifica-
tion problem, human expectations for statistical regularities in
the environment and the uncertainty involved are summarized
as a persistence diagram DX . We assume that the underlying
prior uncertainty of a persistence diagram DX is generated by
a Poisson point process DX with intensity λDX . An example

(a) (b)

Fig. 1. (a) is illustrating the conversion of signals to the corresponding PDs
using sublevel set filtrations. A smooth signal and a noisy version of it are
presented in black and red respectively. For persistence diagrams, we make
consistent color choices to instantiate the robustness of persistent homology
to noise. (b) is the tilted representation of the PD in (a)

of prior persistence diagrams is shown in Fig. 2 (a) as black
rectangles. Any point x in a persistence diagram DX may
not be observed in actual data due to the presence of noise,
sparsity, and/or other unexpected scenarios. We address this
instance by defining a probability function α(x). In particular,
if x is not observed in the data, the probability of this event
is (1−α(x)) and similarly α(x) is the probability of x being
observed.
Data/Likelihood Model: EEG signals are encoded into the
observed PDs, DY , using the method discussed in Section
II-A. Points yi ∈ DY are linked to points in PD DX , generated
by the prior PPP. We investigate the linking of these points to
the prior PPP by relying on the theory of marked Poisson
point processes (MPPP) [33], [34]. The probability density of
the MPPP is given by a stochastic kernel, ` such that the marks
m(xi) of xi are drawn independently from `(·|xi), which in
our case plays the exact role of the likelihood (see Section
II-B for details). One needs to account for all possible marks,
with the more likely marks realized as larger likelihood values
`(yi|xi) for all (xi, yi) ∈ DX×DY . In order to accommodate
the nature of persistence diagrams, we need to define one
last point process that unveils the topological noise in the
observed data. Intuitively, this point process consists of the
points in the observed diagram that fail to associate with the
prior. We define this as a Poisson point process DYU with
intensity λDYU .

A sample observed persistence diagram is shown in Fig. 2
(a) as red hexagons. Fig. 2 (b) and (c) show different combi-
nations of possible associations between prior and data in the
green regions. However, it is evident that the associations in
(b) would have higher likelihood values than that in (c) and in
turn, would have more impact on posteriors. Also, for every
configuration, some of the observed points do not associate
with any point xi ∈ DX , which is shown with blue regions.
We denote the features in blue regions as DXV , which stands
for the features that vanished. If they are not vanished and
make associations with features of DY , we denote it as DXO .
Samples from DYU are shown in Fig. 2 (b) and (c) as yellow
regions.
Posterior: With the above model characterization, the poste-
rior intensity which explicitly show the update of the prior has
the following form [22]:

λDX |DY1:m (x) = (1− α(x))λDX (x) +

α(x)

m

m∑
i=1

∑
y∈DY i

`(y|x)λDX (x)

λDYU (y) +

∫
W
`(y|u)α(u)λDX (u)du

. (1)

In the posterior intensity density, the two terms reflect the
decomposition in the prior point process. The first term is for
the features of prior which may not be observed and hence the
intensity is weighted by (1 − α(x)). On the other hand, the
second term corresponds to the features in prior that may be
observed and similarly is weighted by α(x). Here we observe
an expression consistent with the traditional Bayes’ theorem,



(a) (b) (c)
Fig. 2. (a) is a sample DX from prior Poisson PP DX and an observed
persistence diagram DY . (b) and (c) are the decomposition of DX into DXO
& DXV and DY into DYO & DYU .

specifically a product of prior intensity and likelihood divided
by a normalizing constant. The normalizing constant consists
of two terms illustrating the two instances of our data model.
DYU consists of the features that are not associated to the prior
and this is evident in the first term of the normalizing factor.
Consequently, the second term provides the contribution of the
observed data from DY , coupling with prior features to form
the marked PPP.

IV. BAYESIAN CLASSIFICATION

In this section, we develop a Bayesian learning approach
that discriminates EEG signals from different cognitive states.
In particular, we present a classification scheme based on
Bayes factors of persistence diagrams generated from physio-
logical signals. We start by extracting fundamental topological
features from a collection of EEG signals and record the
information in persistence diagrams using the sublevel set
filtration discussed in Section II-A.

For a persistence diagram D that needs to be classified, we
assume that D is sampled from a Poisson point process D
in H with prior intensity λD. Consequently, its probability
density has the form pD(D) = e−λ

|D|!
∏
d∈D λD(d), where

λ =
∫
W λD(u)du is the expected number of points in D. For

training sets QY k := DY k1:n
for k = 1, · · · ,K from K classes

of random diagrams DY k , we obtain the posterior intensities
by following the estimation process discussed in Section III.
The posterior probability density of D given the training set
QY k defined as

pD|D
Y k

(D|QY k) =
e−λ

|D|!
∏
d∈D

λD|Q
Y k

(d). (2)

The posterior probability densities given the other training
sets are obtained by analogous expressions. Consequently, the
Bayes factor is defined as

BF i,j(QY i , QY j ) =
pD|DY i (D|QY i)
pD|DY j (D|QY j )

(3)

For every pair of (i, j) for 1 ≤ i, j ≤ K if
BF i,j(QY i , QY j ) > c, we will assign one vote to class QY i
or otherwise for BF i,j(QY i , QY j ) < c. The final assignment
of the class of D to a class is obtained by a majority voting
scheme.

V. APPLICATION TO EEG

A. Conjugate family of priors for EEG signals

Here, we present a a closed form of the posterior distribu-
tion through a conjugate family of priors, e.g., the Gaussian
mixtures. Hence the prior-to-posterior updates yield posterior
distributions of the same family. We specify the prior intensity
density as λDX (x) =

∑N
j=1 c

DX
j N ∗(x;µDXj , σDXj I), where

N is the number of corresponding mixture components and
N ∗ is the restricted Gaussian density on the wedge W. In a
similar fashion, we define the density of the Poisson point
process DYU . The likelihood density is also Gaussian as
`(y|x) = N ∗(y;x, σDYO I) and α(x) = α. With all of these
we obtain a Gaussian mixture posterior intensity density of
the form
λDX |DY 1:m

(x) = (1− α)λDX (x)+

α

m

m∑
i=1

∑
y∈DY i

N∑
j=1

C
x|y
j N

∗(x;µ
x|y
j , σ

x|y
j I), (4)

where Cx|y, µx|y and σx|y are weights, mean and variance
of the posterior intensity respectively, corresponding to the
second part of (1), and these are pertinent updates of the prior
parameters [22].

B. EEG Datasets

US Army Aberdeen Proving Ground (APG) researchers
have simulated noisy EEG signals based on different mental
activities. We used this dataset for our analysis mainly focus-
ing on two different frequency bands – alpha and beta. Alpha
(frequency from 8 to 13 Hz) corresponds to intense mental
activity, stress, and tension, and beta (frequency 1330Hz)
correlates with active attentions and focusing on concrete
problems or solutions [35]. As the dataset contains several pre-
dominant oscillations based EEG signals, a Gaussian conjugate
prior produces promising results for estimating the posterior
probabilities as well as for Bayes factor classification [36]–
[38].

C. Posterior estimation of EEG Datasets

We first converted the EEG signals to persistence diagrams
via sublevel set filtrations. In Fig. 3, we present two samples
from the EEG dataset of alpha (a) and beta (d) bands respec-
tively along with their persistence diagrams in (b) and (e).
Typically EEG signals encode various forms of noise and the
simulated EEG dataset accounts for this by corrupting these
signals with additive noise. The signals in Fig. 3 have the
signal to noise ratio (SNR) 0, which implies equal contribution
from signal and noise.

In Fig. 3 we illustrate a posterior intensity estimation of
a noisy alpha band and a noisy beta band utilizing (4). To
demonstrate a data-driven posterior, we employed an unin-
formative prior of the form N ((3, 3), 20I). To present the
intensity maps uniformly, we divide the intensities by their
corresponding maxima and call them scaled intensities ranging
from 0 to 1.



(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) is an alpha band simulated EEG signal, (b) is the corresponding
persistence diagram using sublevel sets and (c) is the posterior intensity map
obtained from (4). Similarly (d) is a beta band, (e) is the corresponding
persistence diagram, and (f) is the corresponding posterior intensity map.

D. EEG signal classification with Bayesian learning

Detection and classification of specific patterns in the brain
activity are crucial steps in understanding functional behaviors
for developing human-machine communications. We have
taken the first step toward engaging Bayesian learning in EEG
signal analysis by implementing Gaussian posterior intensities
as explained in Section V-A and using these posteriors for a
binary Bayes factor classification. From the dataset provided
by APG researchers, we used two instances of additive noise
in order to represent cases with two different SNR. Our
considered dataset comprises SNRs such as 3 and 5, where
SNR 5 has more contribution from the signal than SNR3.

We followed the process discussed in Section V-A to
estimate the posterior intensity of a persistence diagram D
in H given a training set QY , with the goal of identifying
the correct class of D. We used the R package BayesTDA
to obtain posterior intensities. Consequently, the probability
density was obtained from (2). After computing the intensities
with respect to the training sets from both of the classes, the
Bayes factor was computed by (3) as the ratio of the posterior
probability densities of the unknown persistence diagram D
given each of the two competing training sets from QY or
QY ′ . For a threshold c, BF (D) > c implies that D belongs
to QY and BF (D) < c implies otherwise.

We implemented 10-fold cross validation for estimating the
accuracy. For this we partitioned each class into 10 different
sets and 9 of them for each class were used for training
sets, and 1 was used for testing. We repeated this 10 times
so that every partition acts as the testing data exactly once.
We then found the average among all partitions. Results
from the Gaussian learning scheme are presented in Fig.
4. We compared the results of Gaussian learning scheme
with Artificial Neural Networks (ANNs), logistic regression
(LR) with features (mean, standard deviation and entropy of
the recorded coefficients) extracted from Wavelet Transform

Fig. 4. Comparison of our Bayesian learning method with logistic regression,
Artificial Neural Network (ANN), persistence landscape with support vector
machine (PLSVM), and persistence landscape with logistic regression (PLLR).
ANN was trained by a standard back propagation algorithm, a sigmoid
activation function, and some other parameters such as, number of hidden
layers = 100, the maximum number of iterations =1000, error threshold =0.001
and learning rate =0.1.

(WT). We prefer to use WT rather than Fourier transform
(FT) due to its inability to analyze nonstationary nature of EEG
signals [39], [40]. Both ANN and LR have been widely applied
for physiological signals classification [25], [41]–[46]. We also
compared our result with an exiting TDA technique namely,
persistence landscape [47]. We extracted the first landscape
functions of the persistence diagrams for all considered EEG
signals and implemented support vector machine and logistic
regression on the extracted landscape function. Our results for
classifying these two bands of SNRs outperforms the other
existing TDA and non-TDA based classification methods over
all levels of SNRs considered here. Furthermore, the Gaussian
learning scheme is able to classify almost perfectly with a high
signal to noise ratio.

VI. CONCLUSION

In this work, we have proposed a Bayesian framework
for persistence diagrams that incorporates prior beliefs about
signals and does not rely on any regularity assumptions such
as stationarity or linearity for the computation of posterior
distributions. The topological descriptors, e.g., persistence
diagrams of EEG signals can decipher essential shape peculiar-
ities by avoiding complex and unwanted geometric features.
Our method perceives persistence diagrams as point processes
(PPs). As required for a Bayesian paradigm, we incorporate
prior uncertainty by viewing persistence diagrams as Poisson
PPs with a given intensity. We model the connection be-
tween prior PP and persistence diagrams of noisy observations
through marked PPs. These models the data likelihood com-
ponent of the Bayesian framework. Additionally, we define
the likelihood through topological summaries of a signal
rather than using the entire signal. This is analogous to the
substitution likelihood discussed by Jeffreys [31].

Relying on the posterior distributions obtained from the
Bayesian framework, we develop a Bayesian learning scheme.
Furthermore, we present a closed form of the posterior esti-
mation through a conjugate family for priors. In the case of

https://github.com/maroulaslab/BayesTDA


synchronized brain activity, this implementation is useful for
analyzing EEG signals. This exhibits the ability of our method
to recover the underlying persistence diagram, analogously to
the standard Bayesian paradigm for random variables.

We employ this Bayesian learning scheme for EEG signal
classification. We provide a detailed comparison with some
of the existing methods of signal classification and showcase
that our method outperforms them. For comparison purposes,
we pursue two directions. Firstly, we compare with two most
widely used signal classification algorithms–neural nets and
logistic regression. Secondly, we show a comparison between
our method and another topological tool, namely persistence
landscape, with traditional machine learning methods such as
support vector machine and logistic regression. We exhibit
higher accuracy for all considered cases. Thus, the Bayesian
inference developed here opens up new avenues for machine
learning algorithms for complex signal analysis directly on the
space of persistence diagrams.
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