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9Université Montpellier 2, UMR EME 212, Sète, France
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The desire to predict the consequences of global environmental change has

been the driver towards more realistic models embracing the variability and

uncertainties inherent in ecology. Statistical ecology has gelled over the past

decade as a discipline that moves away from describing patterns towards

modelling the ecological processes that generate these patterns. Following

the fourth International Statistical Ecology Conference (1–4 July 2014) in

Montpellier, France, we analyse current trends in statistical ecology. Impor-

tant advances in the analysis of individual movement, and in the modelling

of population dynamics and species distributions, are made possible by the

increasing use of hierarchical and hidden process models. Exciting research

perspectives include the development of methods to interpret citizen science

data and of efficient, flexible computational algorithms for model fitting. Stat-

istical ecology has come of age: it now provides a general and mathematically

rigorous framework linking ecological theory and empirical data.
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1. Introduction
Variability is challenging ecology, from genes to individuals,

species or ecosystems: quantifying and explaining biological

variation is an ever-important goal. Variability arises from

both ecological processes and sampling, requiring the modelling

of uncertainty, the very nature of statistics [1,2].

Statistics has long permeated the field of ecology through

the contributions of eminent scientists such as Fisher, Haldane

and Leslie. However, we detect a recent rise in statistical aware-

ness, manifested in various ways. First, research centres

especially devoted to statistical ecology have been created in

the USA (Statistical and Applied Mathematical Sciences Insti-

tute) and the UK (National Centre for Statistical Ecology).

There are also institutes focused on synthesis (e.g. the National

Center for Ecological Analysis and Synthesis and the National

Institute for Mathematical and Biological Synthesis, both in

the USA). Second, new journals dedicated to methodologi-

cal advances (not only statistical) have been created and are

now having considerable impact (notably Molecular Ecology
Resources and Methods in Ecology and Evolution). Third, there

are more specialized conferences that provide the opportunity

for statisticians to interact with ecologists for mutual benefit.

The reasons for this recent rise of statistical ecology are manifold

and include the societal demand for scientists to address press-

ing issues such as global change and the current biodiversity

crisis, the need to analyse the massive datasets and the novel

data types generated by new technologies, and the populariza-

tion of methods through free statistical packages and the

increase in computing power. We view the rise of statistical ecol-

ogy as a sign that ecological and statistical modelling are coming

together with the common goal of understanding complex pro-

cesses in a formal inferential framework for better predictive

capabilities. We acknowledge that not all ecologists agree that

ecology lends itself to theorization and prediction [3] or that pro-

cess-based methods necessarily have higher predictive ability

than phenomenological models [4,5]. However, past disap-

pointments may simply be due to inappropriate and coarse

modelling. If so, progress in both ecological theory and statisti-

cal ecology and a better integration of the two should enhance

our understanding and our ability to predict ecological

phenomena. In the following, we highlight recent trends in stat-

istical ecology and provide perspectives for the future

development of this discipline (see also [6]).

We analysed the contents of the abstracts of four

International Statistical Ecology Conferences (ISECs) held bian-

nually between 2008 and 2014 to provide a picture of recent

trends in statistical ecology (electronic supplementary material,

Appendix S1). The quantitative results of this analysis show a

temporal shift across the different ISECs, from studies focusing

on sampling design issues towards predictive studies that aim

to integrate the modelling of processes with the analysis of

ecological patterns. These results are further synthesized below.
2. Questions being addressed
(a) Assessing species distribution
Species distribution models (SDMs) are now common tools to

investigate the main drivers of species range and to forecast

potential impacts of environmental changes on biodiversity.

Important innovations include the use of point processes to fit

SDMs to presence-only data and the mathematical equivalence
of MAXENT (acommon SDM tool) to generalized linear models

in this context [7]. SDMs are also being extended to several

species to improve the model parametrization for rare species

and to enable the estimation of co-occurrence patterns. Last,

the development of hierarchical occupancy models, with their

ability to handle spatial dependence and imperfect detection,

paves the way for better modelling of the underlying sources

of uncertainty [8].

(b) Measuring biodiversity
Biodiversity is multifaceted, involving aspects of species rich-

ness, functions, traits and phylogeny. Consequently, the

choice of relevant diversity indices is challenging, especially

when analysing aspects of functional or phylogenetic diversity

and when evaluating the dissimilarities among locations

(quadrats, sites or regions). Moreover, the potential factors

driving the dynamics of biodiversity (e.g. competition and

environmental filters) need to be disentangled.

(c) Investigating population dynamics
In the ISECs, estimation of population size has been a major

focus, notably through refinements of capture–recapture

(CR) methods. There has been an increase in non-invasive

methods that use natural identifying characteristics of animals

(camera or acoustic traps, genetic markers), with treatment of

misidentification error. In parallel, spatially explicit models

have been developed to fully exploit the spatial information

in CR data [9,10].

(d) Understanding animal movements
Movement ecology has shifted from phenomenological

models of observable patterns to mechanistic models charac-

terizing the underlying processes. In particular, the use of

state–space models that account explicitly for the observation

process has now become standard [11], and hierarchical

models have been developed to model individual movements

as functions of behavioural states, past experiences and

environmental heterogeneity [12]. While earlier work relied

on discrete-time correlated random walks, the use of con-

tinuous-time models and the integration of other types of

data (e.g. species interactions and population dynamics)

are increasing.

(e) Interpreting citizen science data
Data from citizen science programmes represent an opportu-

nity to sample large regions and inform long-term monitoring

studies. Difficulties arise with recent programmes based on

web- and smartphone-based technologies that are characterized

by the free participation of many laypersons, loose sampling

protocols and heterogeneities in the spatio-temporal distri-

bution of observations. These potential sources of bias may

be accounted for by the joint modelling of the ecological and

observation processes through, for example, hidden process

models [13].
3. Material and methods
(a) Hidden process modelling
Ecologists have broadly adopted hierarchical, state–space and

hidden Markov models to deal with the way in which individuals
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and populations distribute in space and change over time [14].

This reflects a move away from modelling spatio-temporal

patterns per se and towards modelling the ecological processes

that generate those patterns. The timescale of interest might be

short, such as for animal behaviour, medium, such as migration

and demographic processes, or long, such as for changes in

species ranges, composition and biodiversity, or for evolutio-

nary processes. By modelling the underlying processes while

accounting for observation error and model uncertainty, we

seek to gain in predictive ability and hence in the effectiveness

of management actions, whether we are managing a commercial

fishery, conserving a threatened population, assessing the

impact on biodiversity of habitat loss, predicting response of

populations to disturbance or evaluating the effects of climate

change on communities.

(b) Coexistence of frequentist and Bayesian frameworks
Bayesian methods are now widely used, largely because they can

more easily accommodate realistic ecological models. However,

two notable trends are emerging: an increasing interest in criti-

cally evaluating the performance of Bayesian methods from a

frequentist perspective [15], and the increasing practicality of fre-

quentist tools for hierarchical models previously only amenable

to Bayesian methods (e.g. [16]).

(c) Dynamic models
Current research in population dynamics addresses the limits of

statistical inference and predictions for nonlinear dynamics (e.g.

[17]). Beyond the population, dynamic statistical models are now

applied at larger spatial and organizational scales to describe the

dynamics of species ranges, communities and ecosystem pro-

cesses (e.g. [18]). A common feature of these recent statistical

models is that they describe how large-scale dynamics arise

from underlying principles of demography and/or ecophysiol-

ogy, aiming to base inference and prediction on processes

rather than correlations.

(d) Integrated modelling
Another trend is the popularization of integrated modelling—

i.e. combining different datasets in a single, coherent analysis

[19]—to address a wide variety of ecological questions. Current

developments deal with the issues of goodness-of-fit testing,

model selection, integration of recent developments in demogra-

phy (e.g. integral projection models) and testing the assumption

that data from different sources can be considered independent.

From an ecological viewpoint, integrated modelling now scales

from populations up to communities [20].
4. Implementation
(a) Computational algorithms
The development of efficient and flexible computational

algorithms for complex models and big datasets ([integrated

nested] Laplace approximations, Hamiltonian Monte Carlo

and standard Markov chain Monte Carlo algorithms) requires

tremendous research efforts, as does their implementation in

software packages (e.g. R-INLA (http://www.r-inla.org/),

AD Model Builder (http://admb-project.org/), Laplaces

Demon (http://www.bayesian-inference.com/software), Stan

(http://mc-stan.org/), Nimble (http://r-nimble.org/), Open-

BUGS (http://www.openbugs.net/w/FrontPage), JAGS

(http://mcmc-jags.sourceforge.net/), PyMC (http://pymc-

devs.github.io/pymc/), MCMCglmm (http://cran.r-project.
org/web/packages/MCMCglmm/index.html)). When a

complete likelihood cannot be easily calculated, methods for

estimation based only on simulations and summary statistics

(Synthetic likelihood [21]; Approximate Bayesian Computation

[22]) are also receiving attention.

(b) Software development and evaluation
There is a tension between devoting time to developing new

methodology and enabling other researchers to implement it.

Although it is easy to self-publish an R package or a graphical

user interface (GUI), a culture shift is needed towards more

thorough testing and verification of published software. We

welcome the initiative of ecological journals to publish soft-

ware papers, which ensures that publicly available software

is peer-reviewed, and endows software development efforts

with much-needed professional recognition.
5. Advice to statistical ecologists
(a) Avoiding statistical machismo1

Given methodological developments and increasing comput-

ing power, there is a great temptation to increase model

complexity. In some cases, this is helpful: previously restrictive

assumptions about the observation process can be relaxed;

previously intractable ecological mechanisms can be

expressed as mathematical models and incorporated in esti-

mation. In other cases, however, increasing complication can

lead to less robust inference or ecologically insignificant

improvements, which nevertheless waste practitioners’ time

and direct their energies away from less glamorous topics

such as improved data collection; there is also often an

increased chance of mistakes in implementation. There is a

clear need for an evaluation strategy of new, often complex

statistical methods to determine the scope of beneficial

application for ecology [23]. Beneficial means that for a given

ecological question and dataset, applying the new or modi-

fied method provides clearer results and avoids drawing

flawed conclusions. Comprehensive model evaluation must

include consideration of sample design, covariate selection,

goodness-of-fit and parameter redundancy diagnostics.

(b) Going one step further
Many ecological applications are motivated by scientific

support for conservation or management decisions. Statistical

decision theory has much to offer, both directly in terms

of helping rational decision-making, and also in optimizing

future data-collection efforts.
6. Conclusion
The dialogue between statisticians and ecologists has intensi-

fied over recent decades, and ISECs have contributed to this

dialogue. We encourage even more mixing between statis-

ticians and ecologists, by exhorting the former to go to the

field to gain a sound understanding of the data for relevant

modelling [24], and the latter to embrace courses in math-

ematics that underpin the reliable application of statistical

methods [25].

In summary, the statistical approaches developed for ecol-

ogy are maturing towards a statistically rigorous, explanatory

http://www.r-inla.org/
http://www.r-inla.org/
http://admb-project.org/
http://admb-project.org/
http://www.bayesian-inference.com/software
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http://mc-stan.org/
http://mc-stan.org/
http://r-nimble.org/
http://r-nimble.org/
http://www.openbugs.net/w/FrontPage
http://www.openbugs.net/w/FrontPage
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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http://pymc-devs.github.io/pymc/
http://pymc-devs.github.io/pymc/
http://cran.r-project.org/web/packages/MCMCglmm/index.html
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and possibly predictive framework for linking theory, data

and applications. Exciting research directions are ahead of

us that we hope will help to address pressing issues in the

context of global change.
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