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Motivation for Studying Aerosol Chemistry

Why should we care about aerosol dynamics?

Radioactive forcing

Cloud formation

Regional variations

Feedback mechanisms
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Motivation for Simulation

Why use simulation?

Aerosols are difficult to measure

Study behavior and interactions for different scenarios

What about existing simulators?

MOSAIC: Model for Simulating Aerosol Interactions and Chemistry

Computational complexity associated with the detailed
representations of aerosol

Closed-source
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Can we do better?

Maybe

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808
particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types.
MSE ≈ 8.126× 10−7 in rate of change rate. Time to predict ≈ 0.4 seconds
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Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Our Contribution to Current GNS

Inspired by Kumar and Vantassel 2022’s Pytorch GNS:
https://www.geoelements.org/gns

Multi-dimensional time-changing features

Multi-dimensional node properties

Alternative activation functions

Prediction pipeline

Data transformation pipeline

Output analysis pipeline

Ferracina et al. Chem GNS April 27, 2024 5 / 16

https://www.geoelements.org/gns


Graph Neural Networks (Scarselli et al. 2008)

Figure: A single layer of a simple GNN. A graph is the input, and each component
(V,E,U) gets updated by a MLP to produce a new graph. Each function subscript
indicates a separate function for a different graph attribute at the n-th layer of a
GNN model. source: https://distill.pub/2021/gnn-intro/
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GNN Schematics

Figure: GNN scheme for Chem GNS
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Graph Network Simulator (GNS) by Sanchez-Gonzalez
et al. 2020

Figure: dθ uses an “encode-process-decode” scheme, which computes dynamics
information, Y , from input state, X
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Chem GNS

Figure: Uses an “encode-process-decode” scheme, which computes dynamics
information, Y , from input state, X
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Results from GNS Simulations: Water

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808
particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types.
NMAE ≈ 0.004. Time to predict ≈ 0.4 seconds
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Results from GNS Simulations: Sulfate

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808
particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types.
NMAE ≈ 0.007. Time to predict ≈ 0.4 seconds
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Results from GNS Simulations: Sulfuric Acid

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808
particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types.
NMAE ≈ 0.011. Time to predict ≈ 0.4 seconds
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Training on Different Examples

Figure: Results from Chem GNS trained on 9 different simple particle-gas systems. 142
timesteps, 1132 particles, 3 time changing features, 3 time fixed particle properties, 2
chemical types. MSE ≈ 0.03 in rate of change rate. Time to predict ≈ 0.03 seconds
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Future Directions

Improve accuracy in high dimension non-linear space - may require
more careful selection of functions

Particle-particle interaction

Global nodes with environmental information
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Conclusion

Originally proposed for physics applications, GNS can work in
chemical domain

Making it bigger and better will require thinking outside Euclidean
space

Inclusion in climate models could be significant, if fast speeds can be
maintained
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